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Abstract. We characterise the quantisation U, of the classical map A E SL(2, Z) using the 
Heisenberg group, construct the eigenstates for N =perfect square (where h = 277/ N )  and 
show that the Fourier components of the Wigner functions of a complete set of eigenstates 
go to zero for N = p 2 ,  p prime, p -* CO, A hyperbolic. 

1. Introduction 

In order to study the quantum mechanics of systems whose classical motion is chaotic, 
it is useful to examine the quantisation of simple classical maps. The maps we are 
considering here are the area-preserving linear maps of the two-dimensional torus onto 
itself (‘Arnold’s cat’ (Arnold and Avez 1968)). They are described by 2 x 2  matrices 
A which have integer elements and determinant 1 (i.e. A E SL (2, Z)). 

These maps were first quantised by Hannay and Berry (1980). Due to the compact- 
ness of the phase space the dimension of the Hilbert space of quantum states is finite. 
Its dimension N is related to Planck’s constant by h = 27r/ N, where we are assuming 
the periods of the torus to equal 2 ~ .  

Other maps which have been quantised so far are the standard map on the torus 
(Izrailev 1986, 1987) and the Baker’s transformation (Balazs and Voros 1987, 1989). 

Important properties of quantum systems are the distribution of eigenvalues and 
the behaviour of the eigenfunctions. The energy level spacing distribution, for instance, 
of the two quantised maps just mentioned is in good agreement with the generic one 
(namely the GOE for these maps), in contrast to the cat maps (for a discussion of the 
eigenvalues of the quantised cat see Hannay and Berry (1980)). 

If the classical dynamics of a system are completely chaotic, one might expect that 
in the semiclassical limit the eigenfunctions of the quantised system look very irregular. 
Berry (1977) conjectured for such a system that the smoothed Wigner function of each 
eigenstate converges to the classical microcanonical distribution for h + 0 and that the 
eigenfunctions behave like Gaussian random functions (see also Voros (1979)). In 
fact, it is known that the Wigner functions of almost all eigenstates converge to the 
classical distribution, if the classical motion is ergodic (Shnirelman 1974, Helffer et aJ 
1987 and references therein). The question, however, as to whether this is true for 
each individual eigenstate is much more subtle. After numerical computations for the 
quantum stadium billiard by McDonald (1983) and Taylor and Brumer (1983) it 
became clear that the conjectured picture of the eigenfunctions has to be modified 
(Heller 1984). They found that some states look very regular even at high energies 
and that they are localised in some part of the configuration space (for instance, in 

0305-4470/90/112013 + 13%03.50 @ 1990 IOP Publishing Ltd 2013 



2014 S Knabe 

the rectangular region of the stadium or in channels along closed classical orbits 
exhibiting ‘scars’). Good approximations for some of the regular states were found 
by Shapiro et a1 (1984) and Bai er al (1985) using suitable Born-Oppenheimer 
approximations. ‘Scars’ were also found for a quartic oscillator (Eckhardt et al 1989) 
and for the Baker’s transformation (Balazs and Voros 1989). In this paper we will 
show that no such localisation persists for N + 00 for the quantised cat (A hyperbolic) 
under the additional assumption N = (prime)2. More precisely, we prove that the 
Wigner functions converge weakly to equidistribution. Essentially the same result was 
also found by Eckhardt (1986) using less rigorous arguments. 

A theory of the contribution of closed classical orbits to the eigenfunctions was 
developed by Bogumolny (1988) and extended to Wigner functions by Berry (1989). 
Their work is similar in spirit to the analysis of Gutzwiller (1971) of the Green function 
as a sum over classical paths. This theory was applied to cat maps by Keating (1989). 
The results in Bogumolny (1988) and Berry (1989) seem to imply that the contribution 
of scars to the Wigner functions tends to zero for h +O. Note, however, that the size 
of the considered energy interval has to be sufficiently small in order to resolve 
individual eigenstates and that in this limit the convergence of the involved closed 
orbit series is questionable, as mentioned in Berry (1989). 

In section 2 we will reformulate the quantisation of A in a more algebraic setting 
using the Heisenberg group. 

In Hannay and Berry (1980) the quantum propagator U, was constructed in terms 
of the classical action. We will characterise U, by the transformation behaviour of 
the Heisenberg group under U,, namely (2.7). In both approaches one uses the fact 
that semiclassical approximations are exact due to the linearity of A. 

In section 3 we calculate all eigenvectors and eigenvalues of U, for the case that 
N is a perfect square. One way to construct eigenvectors of U, (for special A)  was 
described by Eckhardt (1986) (see also Esposti and Knauf 1989). The key is to find 
states such that one can write the eigenfunctions as superpositions of these states in 
a simple way. It is interesting that our states are completely different from those used 
by Eckhardt and that they are delocalised in position as well as in momentum. 

One important question is, of course, whether the assumption N = (prime)’ is only 
of a technical nature or whether number theoretical properties of N play a crucial 
role. We will discuss this briefly at the end of section 4. 

2. The quantisation and the Heisenberg group 

The Heisenberg group is defined by 

t (x) t (y)  =exp(-i.rrx A ~ ) ~ ( x + Y )  x,yER2 

where 

and the t (x)  are unitary operators on some Hilbert space. 
We are interested in the subalgebra generated by 
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where 

This is the largest subalgebra which leaves the considered Hilbert space invariant. 
We get a representation of this algebra in terms of the position operator q and the 

momentum operator p by 

t l  = e’¶ t 2  = eiP. (2.3) 
This is consistent with (2.1) and (2.2) if we choose h =2.rr/N. 
All finite dimensional unitary irreducible representations of this algebra are deter- 

mined by two phases cpl, cp2 in the following way: 

t? = exp(2vicpi) . n i = l , 2  (2.4) 
and there exists an orthogonal basis {(Lk}F=-, , such that 

(2.5) 

where (Lk+N := (Lk. 
If we make the identification (2.3), then we may represent $k as a wavefunction by 

Then (Lk is periodic (up to the phases cpl, cp2) in q and in p with period 2.rr. (The 
(Lk are of course not normalisable in L2(Iw) and the scalar product has to be ‘renor- 
malised’ such that the +hLk form an orthonormal basis.) 

We will now see that U, is completely determined up to a phase by the requirement 

(2.7) U: exp[i( kq + l p ) ]  U, = exp [ i( kl)A (;)I k, lEP.  

In other words, exp[i(kq + l p ) ]  should transform as an operator under U, in the 
same way as the corresponding phase space function under the classical map. 

The reason that (2.7) should hold exactly is that we are quantising a linear map. 
(The same relation holds for the harmonic oscillator.) Because of (2.2) and (2.3) we 
may write (2.7) as 

1 
X E - - - Z 2 .  (2.8) J N  

Uzt(X) U, = t(ATX) 

For (2.8) to be valid it is sufficient that 

Uzt iUA = t (A ATei) i = 1,2. 

The general case then follows for x = ( 1 / J N )  (xlel  + x2e2), x l ,  x2 E Z from 

(UT,tlUA)xl( L J Z ~ ~ U A ) ~ ~  
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since 

ATel A ATe2 = e, A e, = 1. 

Let now 

Because of det A = 1 we have 

i, i2 = exp( - 2ni  F) i2 i1 
(2.9) 

and the 6 generate therefore the same algebra as the ti. For (2.8) to be consistent it 
must hold that 

i N  = exp(2nipi)  n i = l , 2 .  (2.10) 

On the other hand, if (2.10) is satisfied, then U, exists and is unique up  to a phase. 
To see this, we note that (2.9) and (2.10) imply that there exists an orthogonal basis 
{&>:::, such that (2.5) holds with t i  and $k replaced by f i ,  &, respectively. 

Now (2.8) implies 

and therefore 

U,&, = 

(2.11) 

(2.12) 

for some phase p. But then 

UA& = exp( kq,) VAi;k$o = exp (2;i - kp2 1 t ;k  U,&,= (2.13) 

and U, is uniquely determined. On the other hand, if we define U, by (2.13), then 

U$tiUA= i = l , 2  (2.14) 

and (2.8) holds. 
It remains to investigate under what conditions for A (2.10) holds. But 

if” = t ( m A T e l )  

= exp( i TNA A 12) t tpA12 

= exp(inNAl,AI2) exp 2ni(A,lp1+A,2q2)  * 1. 

and 

?,” = exp(inNA2,A2,) exp 2 ~ i ( A ~ ~ p ,  +A22p2) 0. 

We therefore get the quantisation condition 

(2.15) 

(2.16) 

(2.17) 

and we have proven the following theorem. 
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Theorem 2.1. Consider the N-dimensional unitary representation of the algebra gener- 
ated by t ,  and t2 which satisfies (2.4). Let A E  SL (2, Z) and assume that (2.17) holds 
for some integers n ,  , n 2 .  Then there exists an up to a phase unique unitary map U, 
such that (2.8) holds. 

Let us make some remarks to the condition (2.17). This is a generalisation of the 
‘checkerboard’ condition imposed by Hannay and Berry, namely that 

A=(even odd)  Or (odd even)‘ (2.18) 
odd even even odd 

In this case we may simply choose cp, = cp2 = 0. 
This is also true for N even. If N is odd, choose, for instance, cp, = 0, (p2 = i, if 

if 

even odd 
A = ( o d d  odd). 

This generalisation was also obtained by Esposti and Knauf (1989). 
Note that different solutions of (2.17) lead to the same U,. The only difference 

is, that t l ,  t 2 ,  T I ,  T2 have to be multiplied by some phase factors ( t i  and 6 by the same 
phase factor because of (2.17)). 

For the sake of simplicity we will for the rest of this paper always assume that 
(2.18) holds and that rp, = cp2 = 0. 

To see that our U, and the U, chosen by Hannay and Berry coincide is an easy 
exercise. 

The latter is defined by 

(2.19) 

where (. . . ) m  denotes the average over all integers m. One has to show that 

and similarly 

This is a straightforward computation. 
The following properties of U,, which are shown in Hannay and Berry (1980), are 

easily derived within our formalism. From (2.8) it follows immediately that U,U, = 
U,, (at least up to a phase). Furthermore one is interested in the smallest positive 
integer n (N)  such that 

(2.20) U;(”- - e  i c p ,  U 
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for some phase cp. This is equivalent to 

U*, ti U, = ti ( i = 1 , 2 )  where C = An(N) .  

But 

and therefore it must hold C = TI mod N and (since we assume cpI = cpz = 0), BIZ 
(1 + NBI,) and BZl (1 + NBz2) must be even, where C = U +  NB. The second condition 
follows from (2.18), if N is odd. If N is even then BZ1 and BIZ must be even, and we 
get 

) for N odd 
integer integer 
integer integer 

integer even 
even integer 

for N even. 

A n ( N )  = 1 + N 

A n ( N ) =  I+ N 
(2.21) 

3. Eigenvectors and eigenvalues of U, 

First of all we construct an orthogonal basis which is well adapted to our problem. 
We assume that N is a square number, i.e. N = p 2 ,  p E N. Then t(el)  and ?(e , )  are in 
the algebra generated by t l  and t z .  Since they commute they can be diagonalised 
simultaneously. Since we assume cpl = cpz = 0 there exists a state J, with 

? ( e , ) +  = IL i = 1 , 2 .  

We can express J, by (elk (see (2.5)) by 

(3.1) 

Now define 

1 
P * ( x ) : =  t ( x ) *  X E - Z 2 *  (3.3) 

Then 

t ( e , ) $ ( x )  = e x p ( - 2 ~ i e ,  A x ) J , ( x )  (3.4) 
and therefore ( J , ( x ) l J , ( y ) )  = 0 for x - y g  Z2, since J , ( x )  and $ ( y )  are then eigenstates 
to different eigenvalues of t (  e,) or ? ( e z ) .  It follows that the N = p z  states J , ( x ) ,  x = ( l / p )  
( x1 e, + x2e2) ,  0 S x, , x2 s p - 1, form an orthogonal basis. 

Next we observe that 

t ( e ~ ) U A $ =  uA$ i = 1 , 2  ( 3 . 5 )  

(3.6) 

since 

? ( e i )  UA+ = UAt(ATei)$ = exp(irrAilAiz) UAt(el)A~lt(e,)A~zJ, = U,+ 

because of (3.1) and (2.18). 
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But from (3.4) it follows that + is the only state satisfying (3.1). Therefore 

U,+ = eiY+ (3.7) 

uA$(x) = ( uA~(x) UT,) U,+ = t (Ax )+  = +(AX) 

A = (AT)-'  x E - Z 2 .  (3.9) 

for some phase y. We choose y = 0. 
This implies now 

(3.8) 
where 

1 
P 

It turns now out that all eigenstates of U, correspond to the closed orbits of A 
modulo p on the lattice Z2. In fact, fix x E (1/ p)H2 and let n be the smallest positive 
integer such that 

(3.10) 
Then U, acts like a shift operator times a phase on the subspace spanned by the 

orthogonal system { + ( A k x )  1 k = 0,1, .  . . , n - 1). The phase is determined by the Q 

given by 

+(Anx) = exp(27riq)+(x). (3.11) 
We obtain n eigenstates X k ,  k = 0, . . . , n - 1, by 

x - A"x E H 2 .  

with 

(3.12) 

(3.13) 

Since the sum over the lengths of all closed orbits of A modulo p is p 2  = N, we get 

We have proven theorem 3.1. 
a complete set of eigenstates in this way. 

Theorem 3.1. Let x E ( l / p )H2  and let n be the smallest positive integer such that (3.10) 
holds. Then (3.1 1) is satisfied for some Q E R. The X k ,  k = 0, 1, . . . , n - 1, defined by 
(3.12), are eigenstates of U,, and the eigenvalues are given by (3.13). 

The phase q can be calculated using the periodicity property 

1 

P + ( X + P Y )  = exp(i7r~x A Y )  exp(i.rryly2)+(x) x, y E - P  PY=YIel+Y2e2. 

(3.14) 

4. The Wigner functions of the eigenstates 

In this section we will discuss the behaviour of the expectation values 

(4.1) 

for eigenstates + of U, in the limit p + a .  

we will prove the following. 
They can also be written as Fourier components of the Wigner function of x.  First 
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Theorem 4.1. Let A E SL(2, Z) be hyperbolic, i.e. (Tr AI > 2 ,  and satisfying the property 
(2.18). Let d E E 2 ,  d # 0. Assume that p is a prime number and large enough. Then, 
for every eigenstate x of U, of the form (3.12) holds that 

Therefore 

(4.3) 

for p + 00, p prime number. 

Proof: Since (Tr A)2  - 4  # 0, p is no divisor of (Tr A)2  -4, if p is large enough. 
We will now consider A over the field Z,, i.e. we replace the matrix elements of 

A by the sorresponding residue classes modulo p .  We will denote this new matrix 
again by A. 

has two 
different eigenvalues A and A - ' .  They are in E, or in the larger field Z,[A]. Let 

We have seen that we may assume (Tr A)2 - 4  f 0 (over E,). Therefore 

I 

Az, = Az, A z z = A - ' z 2 .  (4.4) 

A"x= x C 3  x ~ A ~ z ~ + x ~ A - " z ~ = x ~ z ~ + x ~ z ~ .  (4.5) 

Consider now x ~ h i ,  x = x , z l + x 2 z 2 .  Then 

Therefore n = n( p ) ,  if x # 0 and p > 2, and n( p )  can be characterised as the smallest 
positive integer such that 

1 .  (4.6) 

If ,y is of the form (3.12) with x E E 2  (and therefore n = l ) ,  then (Xlt((l/p) d ) l X )  = 0, 
if d Z 0 mod p .  But this is the case for p large enough. If x E E' then we have seen 
that n = n ( p ) .  In order to show (4.2) it is now sufficient to prove that at most eight 
of the terms ( + ( i k x ) [ r ( ( l / p )  d) l t , ! t ( i 'x)} ,  Os k, js n ( p )  - 1 ,  are different from zero. 
Put y = p x  and consider y over E , .  We have then to study the number of solutions 
k, j of the equation 

(4.7) 

A n ( p )  = 

A k y  - A l y  = d. 

Let y = y , z ,  + y 2 z 2  and d = d l z ,  + d,z , .  Then (4.7) implies 

( A  - h J ) y l  = d ,  (4.8) 

(Kk  - A-')y2 d2. (4.9) 

We consider first the case d , ,  d 2 # 0 .  Then we get d 2 = A - k - J ( A J - A k ) y 2 =  

Ak+J  = - dlY2/d24'1* (4.10) 

Since A n  = A m  implies n ( p ) l m  - n  because of (4.6), and since 0 s  k + j ~ 2 n ( p ) - 2 ,  
there are at most two possible values for k + j such that (4.10) holds. Multiplication 
of (4.8) and (4.9) yields 

- A - k - ' d l y 2 / y ,  and therefore 

(2-  A k - J  - A'-k)y lyz  = d l d 2 .  (4.11) 
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This is a quadratic equation in p = A k-J having at most two solutions for p. TO 
each p there are at most two solutions for k - j .  Therefore there are at most four 
possible values for k - j  and the number of solutions k , j  is not larger than eight. 

It remains to consider the case d ,  = 0 or d,  = 0. Let d ,  = 0 and 

d = ( i )  a , b E Z .  

Then 

A ( i) = A ( ;) mod p .  (4.12) 

It follows that p is a divisor of ( ~ , , - A ) a + A l 2 b  and of A21a+(A22-A)b  and 
therefore of 

b [ ( A , ,  -A)a +A12b]-a[A2,a  +(A2,-h)b]=A12b2+(All  -A22)ab -A~,u’. 
Thus (4.13) must be zero if p large enough. 

[2AI2b+ (A,,  -A,,)a]’= 4fi,2A2,a2+(A,l -A22)2a2 = [(Tr A>2 -4]a2 

because of det A = 1 .  

(4.13) 

But then 

(4.14) 

This means that (Tr A)2 - 4  is a square number, i.e. there exists m E No such that 

(TrA) ’ -4=m2.  (4.15) 

This is a contradiction since (Tr A ) 2  = m 2  or I(Tr A)2 - m2( > 4 for (Tr AI > 2, and 
we have proven (4.2). Then (4.3) follows from n (  p )  + CO ( p  + CO). This is so, because 
A n ( p ) =  Ti mod p but # 1 and therefore lJA’n(p)lJ a p  +a( p + CO). 

Next we will consider what happens if x is an eigenstate of U,, but not of the 
form (3.12). This might be the case if the corresponding eigenvalue is degenerate. Let 

A n ( p )  = Ti + p B .  (4.16) 

Then it follows from (3.14) that the states (3.12) have the eigenvalues given by 

C p = i p ( X A  BX)+iUlU2 (4.17) 

Two states of the form (3.12) associated with x and f can only have the same 

(3 .13)  with 

where p B x  = ale ,  + a2e2.  

eigenvalue if cp - (p’ E Z. If we put y = px,  w = p f  this gives 

(4.18) 

for some k E Z. Therefore 

P I (Y A B y )  - ( w  A B w ) .  (4.19) 

Let now ,y be an arbitrary eigenstate of U, given by 

x = c a ( x ) + ( x ) .  (4.20) 

Then a ( x ) ,  a ( f )  # 0 only if (4.19). Furthermore l a ( x ) l s  l / m ,  if x e  Z2. 
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Fix X E  ( l /p)Z2 and assume a ( x )  # 0. Then ( ~ * ( 2 ~ ) ~ ( 2 ~ ) ( J / ( 2 ~ ) l t ( ( l l p ) d ) 1 ~ ( J ~ ) ) f  

(4.21) 

Let y = y l z l + y 2 z 2 ,  w =  w l z l + w 2 z 2 .  Since B commutes with A and A # A - ' ,  z l ,  z2 

Bz, = piz, i = 1,2.  (4.22) 

0 only if (4.19) (with w =pz1) and 

pI w A Bd + d  A B w + d  A Bd. 

We will now do all calculations over Z p [ A ] .  

are also eigenvectors of B. Let 

Then (4.19) and (4.21) are equivalent to 

Ylp2Y2-Y2plYl= w lp2w2-w2~lw1  (4.23) 

~ i l ~ 2 d 2 -  w 2 ~ 1 d i  + ~ ~ P C L Z W Z - ~ ~ C L ~ W ~  + d1~2d2  - d+tdl = 0- (4.24) 

If pl  # p 2  it follows 

YlY2  = W l  wz (4.25) 

w,dz+ dl w2+ d ldz= 0. (4.26) 

Therefore 

w ~ d 2 + d l y l y 2 + d l d 2 w l  = O  (4.27) 

w t d ,  + d 2 y l y 2 +  d ,d2w2 = 0. (4.28) 

These are quadratic equations in w 1  and w 2 ,  respectively (we have seen that we 
may assume d ,  , d 2  # 0). Thus we obtain at most four solutions for w 1  , w 2 .  

Note that the case x = = 0 cannot occur, since then y = w = 0 in contradiction 
to (4.26). Therefore it holds always la*(?2)a(21)l s l / n ( p ) .  It remains the case 
pI = p2 =: p. 

Then 

A n ( p )  E ( l + p p ) . U  modp' (4.29) 

and 

1 = det An(p' = ( 1 + pp)' = 1 + 2pp mod p 2 .  (4.30) 

This implies p = 0 mod p ,  if p > 2. But then 

A n ( p )  = 1 mod p 2  (4.31) 

which is equivalent to n ( p 2 )  = n ( p ) .  We cannot treat this special case. The degeneracies 
are extremely high in this case. 

We have proven theorem 4.20. 

Theorem 4.2. Under the assumptions of theorem 4.1 but for arbitrary eigenstate x of 
U, holds 

(4.32) 

if n ( p 2 ) >  n ( p ) .  

converge weakly to the constant 1/4n2 in an appropriate topology. 
We will now see that our results imply that the corresponding Wigner functions 
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The Wigner function W(q,  p)  corresponding to the state $ can be characterised by 

where 

We remind the reader that 

It follows immediately from (4.33) that 

(4.34) 

(4.35) 

(4.36) 

Therefore we may regard W(q, p) as a linear functional on the Banach space E of all 
f: [O, 2.rrI2+ with l l f l l  : = & I  f k I 1  <a, and its norm is bounded by 1. Thus 

($nlexp[i(kq + b)l1 4”) + 8k,081,0 ( n + a )  (4.37) 

implies Wn+1/4.rr2 in the weak *-topology of E*. 
To see the ‘8-brush’ structure of the Wigner function as stated in Hannay and Berry 

(1980) we use the periodicity of t ( ( l / J N ) ( k e ,  + le,)) under k +  k+2N,  I +  1+2N. This 
implies 

Io2’ dq dpf(q ,  P) W(q, P) = ’ E ’ f k , i ( $ I  exp[i(kq + b)ll$) (4.38) 
k, l=0 

where 

(4.39) 

One can identify W(q, p )  also as a bounded linear functional on C([O, 2 ~ 1 ~ ) .  Let 
2N-1 

F = C f k , l  exp[i(kq + ~ P ) I .  (4.40) 
k , l = 0  

Then 

I($IFI$)I s (($(F*FI$))”2a (Tr F*F)”’. 

Using the fact that Tr t * ( y ) t ( x )  = 0 for x - y  H 2  we get 
2 N - I  

Tr F * F ~  constant x N Ifk,l12. 
k,l=O 

Since 
2 N - l  - 
k,l=O 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

it follows that 
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Unfortunately this bound goes to infinity for N + M, and we cannot show conver- 
gence in the weak *-topology corresponding to C([O, 27rI2). 

Although we can treat theorems 4.1 and 4.2 only the case N = (prime)' rigorously, 
we expect that the Wigner functions converge weakly to a constant also for general 
N. First we observe that for each eigenstate J, holds 

where 

n = n ( N )  
1 n-1  

(4.45) 

(4.46) 

because of ( 2 . 8 ) .  Now t ( ( l / J N ) d )  and t ( ( l / v " ) A T d )  commute if and only if 
d A ATd = 0 mod N. But then d A ATd = 0 for N large enough and d has to be an 
eigenvector of AT. This is impossible, as we have seen in the proof of theorem 4.1. 
We therefore expect that the operators in the sum (4.46) behave like random unitary 
matrices. This suggests that 

1 
IIGII -Jn. (4.47) 

Let us also make a remark to the construction of eigenstates in section 3. Here the 
assumption N = perfect square was crucial. Note, however, that one can make a similar 
construction for N = prime, for instance. To do this replace the states in (3.3) by the 
eigenstates of t ( ( l / J N ) y ) ,  y e Z 2 ,  where y is an eigenvector of AT modulo N (we 
assume in addition that y exists). Then U, permutes these states and a complete set 
of eigenstates can be constructed analogously as in section 3. 
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